
Software Metrics Visualization

Vira Liubchenko
Department of Software Engineering, Odesa Polytechnic National University, Shevchenko Avenue 1, Odesa, Ukraine

lvv@op.edu.ua

Keywords: Metrics, Software, Visualization, Data, Diagrams, Analysis, Decision Making, Effectiveness.

Abstract: Software engineering is an empirical field of study. To support managerial and technical decision-making,

the engineer needs numerical measures closely connected with different software metrics. Visual

representation of numerical data improves the effectiveness of human data processing and shows insights

that humans may miss. This paper aims to provide a systematic review of the approaches for software

metrics visualization and define the possible recommendation for their use. The study is based on the

literature review of the papers from two text collections – IEEE Xplore and ACM Digital Library – and the

scientometric database Scopus. After merging and filtering, the final set of publications contains 16 papers.

Our study showed that there were the metrics used significantly more often; among them are lines-of-code,

cyclomatic complexity, coupling, and cohesion. We were not able to identify such leaders for visualization

means. Instead, there was a tendency to combine different metrics on one chart or dashboard to provide the

whole process picture. Based on the results of empirical studies reported in the literature, we offered an

analysis of simple charts’ properties and recommendations on their use for support decision-making in the

software engineering process.

1 INTRODUCTION

It is well known that software engineering is an

empirical field of study. Therefore, the numerical

indicators are extremally essential and helpful for

process monitoring and artifact evaluation.
Software metrics are an invaluable tool for

measuring the progress and performance of software
development projects. By providing a quantitative
measure of the various aspects of a project, they can
be used to inform decision-making, identify areas
needing improvement, and track progress over time.
Furthermore, software metrics are versatile and can
be adapted to fit the needs of any given project. By
carefully selecting the right metrics, software
developers can gain insight into their project
performance and make better-informed decisions.

However, each metric measures the distinctive

feature or artifact of the development process.

Therefore, the decision maker (e.g., architect, team

lead, project manager) should simultaneously

analyze the metrics set to get a realistic picture of

the current situation in the development process.

To support decision-makers, we follow the idea

of visualizing software metrics. Usually, the

visualization can display a large amount of

information in one chart, so the visualization can be

used to present complex data dependencies typically

found in software artifacts. As a result, the decision-

maker can see the patterns, which allows the

detection of known and unknown problems or

opportunities in the software project.
This paper aims to provide a systematic review

of the approaches for software metrics visualization
and define the possible recommendation for their
use.

To reach our goal, we focused on the two
research questions:

RQ1: What are the most frequently used
software metrics?

RQ2: What kind of visualization means are used
most often?

The contributions of this study are twofold. First,
we built a reference list of the most popular software
metrics for visualization. Second, we gave a brief
analysis of using visualization means.

The rest of the paper is structured as follows.
First, in Section 2, we explain our study design and
the methodology we followed. Section 3 outlines the
publication trends of the papers we gathered.
Section 4 presents the metrics and visualization
means identified during our review and discusses
our results. Some recommendations concerning
chart use are considered in Section 5. Finally, we

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

81

close the study by summarizing the conclusions in
Section 6.

2 STUDY DESIGN

The study aimed to answer RQ1 and RQ2 based on

the relevant papers. The steps of the search and

selection process we followed are depicted in

Figure 1.

Figure 1: Papers selection methodology.

Initial search. We use two text collections –

IEEE Xplore and ACM Digital Library – and the

scientometric database Scopus as data sources for

the study. The keywords for the queries were

“software,” “metrics,” and “visualization” with

connectors AND. We apply this query to all

metadata at IEEE Xplore and ACM Digital Library

and to “Article title, Abstract, Keywords” at Scopus.

Preprocessing. We formed the initial set of

papers at this stage by merging the papers from three

sources. Next, we removed the duplicates from the

set. The issue of copies was caused by using the

database Scopus; most of the papers found there had

been collected in IEEE Xplore and ACM Digital

Library. After the preprocessing, the papers set

collected 69 papers.

Impurity removal. We performed an impurity

removal per set of papers because many side papers

matched the query but were irrelevant to the

research purpose. We can distinguish irrelevant

papers into three groups: concerned software

structure visualization (tree structure hierarchy,

software maps, trace messages, ontology-based

visualization), presentation software statements and

code coloring, and repository footprints. Some of

these papers used the metrics but did not visualize

them. We removed all these papers to make a

coherent set of papers around our purpose. After

removing them, we got 35 papers for the subsequent

analysis.

Exclusion during data extraction. Working on the

papers study, we found some papers that were not as

relevant as expected. There were three types of such

papers: presented the evolution of one framework

and described the same concepts, introduced new

metrics, and described an approach connected with

building artificial entities (e.g., city, feather), which

presented code and were based on metrics using.

Therefore, we removed those papers from our final

set. As one can see in the Reference Section, the

final set of publications contains 16 papers.

3 PUBLICATION TRENDS

Now we present some publication trends found.

Figure 2 shows the distribution of publication

years in the working set of papers obtained after

impurity removal.

Figure 2: Distribution of publication years in the working

set of papers.

For comparison, Figure 3 shows the distribution

of publication years in the final set of publications.

Figure 3: Distribution of publication years in the final set

of papers.

We can see that the scientific interest in the topic

was not very intensive. Although interest in

empirical software engineering methods, based on

metrics use, is consistently higher. In Figure 4, we

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

82

show the statistics of Google Trends on request

“software metrics” for the last three years.

Figure 4: Interest over time to request “software metrics”

(data from Google Trends).

However, we think the software metrics

visualization issue was significantly underestimated.

Different metrics reflect different aspects of the

development process, and metrics understanding is a

complex task for decision-makers. To get the whole

picture, decision-makers should study many metrics

simultaneously. Visualization can support and

simplify the use and understanding of software

metrics.

4 STUDY RESULTS

Our study showed that there were the metrics used

significantly more often. We were not able to

identify such leaders for visualization means. Let us

present our results in detail.

4.1 Software Metrics

In the beginning, we should point out that often

papers did not define the metrics precisely pointed

only, e.g., “cohesion,” when the figures were shown

the concrete metrics. Some papers also presented a

visualization approach in a metrics-independent way

and did not mention concrete metrics. The

distribution of metrics tackled in the papers is shown

in Table 1.

Our study showed two prominent leaders of

popularity: lines-of-code (LOC) and cyclomatic

complexity. Many empirical studies demonstrated

the dependency between LOC and the characteristics

of the development process and software

performance. Cyclomatic complexity is highly

related to implementation and testing characteristics.

We suppose these dependencies caused the high

frequency of this metrics pair use.

Table 1: Software metrics tackled by the papers.

Metrics Papers

Lines-of-code [1] [2] [3] [4] [5] [6] [7]

[8] [9]

McCabe’s cyclomatic

complexity

[2] [3] [5] [8] [9] [10]

Coupling and cohesion

measures

[3] [4] [8] [10] [11] [12]

Fan-in, fan-out [1] [3] [7] [8]

Depth of inheritance tree [4] [8] [10]

Number of children [4] [10]

Encapsulation measures [4] [10]

Number of methods [4]

Parameter number [8]

Method length [8]

Number of bugs [6]

Passage rates of unit

testing

[13]

Maintenance Index [5]

We can see a focus on coupling and cohesion, as

it is known that it is essential to keep low coupling

and high cohesion in software design. But we should

point out that both are generalizations of different

metrics.

We can also see the attention to modularity

connected with fan-in, fan-out, and encapsulation

measures. As for coupling and cohesion, the

generalization of different concrete metrics was

used.

Most of the metrics relate to code features.

However, researchers also pay attention to metrics

specific to other stages of software engineering, e.g.,

testing and maintenance.

4.2 Visualization Means

Unlike software metrics, all papers clearly defined

the type of visualization means they described. And

unlike software metrics, there was no leader of

popularity. The distribution of visualization means

in the papers is shown in Table 2.

A large part of the working set of papers (the set

after impurity removal) was dedicated to the issue of

structure representations. Most often, the researchers

used a dependency chart which reflects software

structure with arc diagrams. To present the measures

of software unit features, they used the size and

color of nodes or provided the data in table form.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

83

Table 2: Visualization means tackled by the papers.

Visualization means Papers

TreeMap [1] [6] [8]

Visual encoding [4] [7]

Line chart [5] [16]

Kiviat diagram [14][15]

Rainbow-color mapped constant-size bars [2]

Timeline and multilevel timeline [3]

Metrics value distribution [4]

HotSpot view [8]

Scatter Plot [8]

Toxicity Chart [8]

Colored graph with variable size of nodes [9]

Weighted digraph [13]

Parallel coordinates plots [10]

RadViz [10]

Radial stacked bar chart [11]

Zoomable circle packing graph [12]

Bar chart [16]

Punch card [16]

A pretty exotic way of visualization was

proposed in [2]. The approach combined the metric-

lens technique (showing numerical values of metrics

as colored bars) with UML diagrams (showing

system structure). The authors claimed that the

approach effectively helps understand the relations

between metrics and structure at a finer level than

the UML diagrams alone.

The significant issue concerning visualization is

the need for simultaneous demonstration of different

metrics. One of the proposed solutions was Kiviat

diagrams. These diagrams are suited to present

multivariate data, such as the feature vectors

extracted from several source code releases and

release history data. For similar purposes

(visualizing source code metrics), Kiviat diagrams

have also been used by related visualization

approaches and tools.

The visual encoding approach combines different

metrics as different parameters of geometry shapes.

It supports the simplicity of the comparison between

different software units. However, each researcher

proposed their configuration. It does not look like a

unified approach will be offered.

Simple line charts are reported not only as

visualization means. For example, in [5], authors

described line charts used for monitoring metrics

from the time perspective and their prediction. In

[10], the authors described using coordinates line

plots multivariate software metrics (Figure 5) in

parallel with the RadViz technique (Figure 6).

Linking the two approaches was applied to detect

outliers, which could indicate bad smells in software

systems. They complement each other in identifying

data patterns, clusters, and outliers.

Figure 5: Parallel coordinates view [10].

Figure 6: RadViz view of exploring noteworthy outlier

patterns in detail concerning a focused set of metrics [10].

Finally, we should notice the idea of metrics

dashboards in [8].

4.3 Discussion

There are many well-known software metrics.

However, in most of the analyzed works, an attempt

to combine some metrics was made. For example,

two papers from the working set were devoted to

studying the properties of indicators that combine

several well-known metrics. As we already

mentioned, many publications used visual encoding

with geometric shapes, the parameters of which are

determined by various metrics. In dependency

charts, two metrics were also considered when

designating vertices.

This confirms that a single metric is not valuable

for analysis and decision-making because it reflects

only one characteristic of an artifact or process. To

provide a more comprehensive picture, multiple

metrics need to be combined. It causes the search for

different approaches to combine different metrics on

one chart or dashboard.

Let us remember that analyzing software metrics

is not an end; it supports engineering or management

decisions. Software metrics are used in various

applications, such as detecting low-quality code,

finding design weaknesses, or estimating work

progress. Therefore, the concept of a good

visualization of software metrics depends mainly on

their application.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

84

In this context, it might be appropriate to

consider structure diagrams in conjunction with

metrics visualization. However, in our opinion, this

approach does not cover all needs. Software types

are becoming more and more diverse, which leads to

the introduction of additional characteristics and,

accordingly, additional metrics. For example, for

software systems of artificial intelligence (AI-based

software systems), such characteristics are

interpretability, scalability, safety, fairness,

staleness, etc. None of these metrics can be

associated with the structural components of the

system. However, for these characteristics, it can

also be helpful to study them together and their

behavior over time.

Software diversification leads to the introduction

of new, specialized metrics requiring adequate

visualization. For example, one uses Koopman

Spaghetti Factor (KSF) for embedded software. KSF

is calculated as

KSF = SCC + 5Globals + SLOC / 20

where SCC is the strict cyclomatic complexity,

Globals is the global variables count, and SLOC is

the number of non-comment source code lines.

As we can see, KSF combines three different

metrics into a single metric. Therefore, it could be

helpful while visualizing KSF to provide a granular

representation of the three components of the metric.

Another example is model quality metrics in AI-

based software systems. The common practice uses

four metrics – accuracy, recall, precision, and F-

score. Usually, their values for different models are

shown in tabular form. It is necessary to compare the

quadruples of metrics for different models to solve

the problem of choosing the best or acceptable

model. Under these conditions, using bar charts is

more convenient than working with four numeric

values from 0 to 1.

Summing up, we should note that metrics

visualization is undoubtedly valuable for software

engineering. Using metrics can make it possible to

detect outliers and other deviations, predict the

development of a process, and so on. Therefore,

next, we provide an analysis of the charts’ properties

and recommendations on their use.

5 EFFECTIVE VISUALIZATION

Visualization capabilities of different charts may

significantly affect the effectiveness of

understanding and interpretation of the presented

data by the decision-maker. Respectively, they also

affect the quality and efficiency of decision-making.

Note that software metrics are quantitative.

Therefore, it is unnecessary to consider use cases for

nominal and ordinal measurements.

In [17], there was pointed out that contextual

information can serve as an essential input to

developing and evaluating effective visualizations.

The authors identified four principal contextual

factors affecting visualization effectiveness:

problem, stakeholder, purpose, and time.

The problem category concerns the problem

situation to be supported and potential solutions. In

the software metrics case, the problem is usually in

the artifacts quality evaluation, efforts and bugs

prediction, quality in use assurance, etc. It requires

visualization to present the data clearly and

comfortably. The stakeholder category involves any

stakeholder-related aspects that affect the design of a

visualization. In our case, the stakeholders are IT-

friendly decision-makers who need easily readable

and understandable information. The purpose

category includes contextual information about what

a visualization stakeholder is trying to achieve

through applying the visualization in a particular

domain. In our case, the purpose is to support

decision-making by providing as much relevant

information as can. The time category contains

temporal information associated with decisional

problems, stakeholders, and purposes. In our case,

the interest in temporal information is restricted by

prediction tasks only.

In the described context, using only the simplest

charts, such as line charts, bar charts, scatterplots, or

pie charts, is advisable. The focus of data

presentation is mapping data values to graphical

representations.

In [18], five recommendations were formulated.

We analyzed their application for the software

metrics visualization.

G1. Use bar charts for finding clusters. The bar

charts have a better overall performance in terms of

time, accuracy, and user preferences for finding

clusters. Clustering is helpful, for example, for

modularity evaluation. For such purposes, the

alternative could be a scatterplot. But it restricts

analysis to only two metrics simultaneously.

G2. Use line charts for finding correlations. The

line charts performed better in terms of time,

accuracy, and user preferences. As in the previous

case, the possible alternative is the scatterplot, which

restricts analysis by two metrics. Studying

correlation with the line chart provides some

additional effects; for example, [10] demonstrated

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

85

the identification of bad smells in code with line

charts.

G3. Use scatterplots for finding anomalies. The

scatterplots have high accuracy and speed and are

highly preferred by users for this task. For purposes

of software development, it could be helpful for

outlier detection. The crucial important issue is the

choice of metrics pair. We can apply dimensional

reduction for scatterplot drawing. However, we

should remember the importance of a clear

interpretation of visual representation. If the

decision-maker needs sense interpretation for the

outliers, it could be impossible in the artificial

feature space.

G4. Avoid line charts for tasks requiring readers

to precisely identify a specific data point's value.

The fact that the axes’ values were drawn at uniform

intervals makes it difficult to identify the value of a

specific data point precisely. Anyway, such tasks are

usually not relevant for decision-making in software

engineering.

G5. Avoid using tables and pie charts for

correlation tasks. As it was noticed in G2, for the

correlation study, the more appropriate option is line

charts.

In [19], a comparative study was realized for

parallel coordinates, scatterplot matrices, and tabular

visualization. The evaluation demonstrated that

tabular visualization was familiar, accurate, and

time-efficient for the retrieve value task. However,

we recommend using the bar charts for the retrieve

value task because it is very close to the clustering

task in the software engineering context.

6 CONCLUSIONS

Decision-making in software engineering has

become increasingly complex, spurring the need for

effective decision-support tools. Numerical data

visualization is a simple, fast, and effective way to

enhance decision-making. In this paper, we

conducted a literature analysis on software metrics

visualization. As a result of the study, we identified

the most frequent metrics used, the trend of

simultaneous visualization of multiple metrics, and

the criteria for choosing chart types.

Furthermore, the development of specialized

software systems—such as embedded software and

AI-based software—has created a demand for

specialized metrics and, consequently, for

visualization tools capable of making sense of these

metrics. As such, it is of utmost importance to

formalize and study the properties of various

visualization tools for software metrics.

ACKNOWLEDGMENTS

This work was sponsored by the Federal Foreign

Office through the Stibet I program of the German

Academic Exchange Service (DAAD).

REFERENCES

[1] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi
treemaps for the visualization of software metrics,” in
Proceedings of the ACM symposium on Software
visualization (SoftVis '05), pp. 165-172, 2005.

[2] H. Byelas and A. Telea, “The metric lens: visualizing
metrics and structure on software diagrams,” in 15th
Working Conference on Reverse Engineering,
pp. 339-340, 2008.

[3] A. Gonzalez, R. Theron, A. Telea, and F. J. Garcia,
“Combined visualization of structural and metric
information for software evolution analysis,” in
Proceedings of the joint international and annual
ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol)
workshops (IWPSE-Evol '09), pp. 25-30, 2009.

[4] R. Francese, M. Risi, and G. Scanniello, “Enhancing
software visualization with information retrieval,” in
19th International Conference on Information
Visualisation, pp. 189-194, 2015.

[5] B. Popović, A. Balota, and D. Strujić, “Visual
representation of predictions in software development
based on software metrics history data,” in 39th
International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 352-357, 2016.

[6] T. Brunner and Z. Porkoláb, “Two-dimensional
visualization of software metrics,” in Proceedings of
the Sixth Workshop on Software Quality Analysis,
Monitoring, Improvement, and Applications, pp. 2:1-
2:6, 2017.

[7] M. Alnabhan, A. Hammouri, M. Hammad,
M. Atoum, and O. Al-Thnebat, “2D visualization for
object-oriented software systems,” in International
Conference on Intelligent Systems and Computer
Vision (ISCV), pp. 1-6, 2018.

[8] J. Slater, C. Anslow, J. Dietrich, and L. Merino,
“CorpusVis - visualizing software metrics at scale,”
in Working Conference on Software Visualization
(VISSOFT), pp. 99-109, 2019.

[9] G. Lacerda, F. Petrillo, and M. S. Pimenta, “DR-
Tools: a suite of lightweight open-source tools to
measure and visualize Java source code,” in IEEE
International Conference on Software Maintenance
and Evolution (ICSME), pp. 802-805, 2020.

[10] H. Mumtaz, F. Beck, and D. Weiskopf, “Detecting
bad smells in software systems with linked
multivariate visualizations,” in IEEE Working
Conference on Software Visualization (VISSOFT),
pp. 12-20, 2018.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

86

[11] A. Yusuf and M. Hammad, “An approach to
automatically measure and visualize class cohesion in
object-oriented systems,” in International Conference
on Decision Aid Sciences and Application (DASA),
pp. 1174-1179, 2020.

[12] A. Yusuf and M. Hammad, “An automatic approach
to measure and visualize coupling in object-oriented
programs,” in International Conference on Innovation
and Intelligence for Informatics, Computing and
Technologies (3ICT), pp. 1-6, 2020.

[13] Y. Muto, K. Okano, and S. Kusumoto, “A
visualization technique for unit testing and static
checking with caller–callee relationships,” Journal of
Convergence, vol. 2(2), pp. 1-8, 2011.

[14] M. Pinzger, H. Gall, M. Fischer, and M. Lanza,
“Visualizing multiple evolution metrics,” in
Proceedings of the ACM symposium on Software
visualization (SoftVis '05), pp. 67-75, 2005.

[15] A. Kerren and I. Jusufi, “Novel visual representations
for software metrics using 3D and animation,” in
Software Engineering, J. Münch and P. Liggesmeyer,
Hrsg. Bonn: Gesellschaft für Informatik e.V., 2009,
pp. 147-154.

[16] S. R. Humayoun, S. M. Hasan, R. AlTarawneh, and
A. Ebert, “Visualizing software hierarchy and metrics
over releases,” in Proceedings of the International
Conference on Advanced Visual Interfaces (AVI
'18),” Article 40, pp. 1-5, 2018.

[17] X. Bai, D. White, and D. Sundaram, “Context
adaptive visualization for effective business
intelligence,” in 15th IEEE International Conference
on Communication Technology, pp. 786-790, 2013.

[18] B. Saket, A. Endert, and Ç. Demiralp, “Task-Based
Effectiveness of Basic Visualizations,” in IEEE
Transactions on Visualization and Computer
Graphics, vol. 25(7), pp. 2505-2512, 2019.

[19] G. J. Quadri and P. Rosen, “A survey of perception-
based visualization studies by task,” in IEEE
Transactions on Visualization and Computer
Graphics, vol. 28(12), pp. 5026-5048, 2022.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023

87

